Abstract

Wound healing effects of 50% ethanol extract of dried whole plant of Bacopa monniera (BME) was studied on wound models in rats. BME (25 mg/kg) was administered orally, once daily for 10 days (incision and dead space wound models) or for 21 days or more (excision wound model) in rats. BME was studied for its in vitro antimicrobial and in vivo wound breaking strength, WBS (incision model), rate of contraction, period of epithelization, histology of skin (excision model), granulation tissue free radicals (nitric oxide and lipid peroxidation), antioxidants (catalase, superoxide dismutase, and reduced glutathione), acute inflammatory marker (myeloperoxidase), connective tissue markers (hydroxyproline, hexosamine, and hexuronic acid), and deep connective tissue histology (dead space wound). BME showed antimicrobial activity against skin pathogens, enhanced WBS, rate of contraction, skin collagen tissue formation, and early epithelization period with low scar area indicating enhanced healing. Healing effect was further substantiated by decreased free radicals and myeloperoxidase and enhanced antioxidants and connective tissue markers with histological evidence of more collagen formation in skin and deeper connective tissues. BME decreased myeloperoxidase and free radical generated tissue damage, promoting antioxidant status, faster collagen deposition, other connective tissue constituent formation, and antibacterial activity.

Highlights

  • Wounds are physical injuries that result in an opening or breaking of the skin

  • Rate of wound contraction in control rats was 21.6% to 68.3% from day 4 to day 12 and 80.6% to 98.1% from day 14 to day 20, while complete epithelization and healing were observed on day 24

  • The percent rate of wound contraction in rats, treated orally with Bacopa monniera (BME) (25 mg/kg), was from 32.2% on day 4 to 85.4% on day 12 and 92.1% to 100% from day 14 to day 20, respectively, while Vitamin E (VTE) treated rats showed increase in wound contraction from 32.4% on day 4 to 87.6% on day 12 and 92.2% to 100% from day 14 to day 20, respectively

Read more

Summary

Introduction

Wounds are physical injuries that result in an opening or breaking of the skin. Proper healing of wounds is essential for the restoration of disrupted anatomical stability and disturbed functional status of the skin. Repair of injured tissues occurs as a sequence of events, which includes inflammation, proliferation, and migration of different cell types [1]. The proliferative phase is characterized by granulation tissue proliferation formed mainly by fibroblast and the angiogenesis process. Factors that contribute to causation and perpetuation of the chronicity of wounds include repeated trauma, poor perfusion or oxygenation, and excessive inflammation [3]. Imbalance in free radical generations and antioxidants has been observed to induce oxidative stress and tissue damage and delayed wound healing. Elimination of ROS could be an important strategy in healing chronic wounds [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call