Abstract
In this study, we assessed the quantity, strength, and acidity of zeolite composites comprising Silicalite-1 grown on ZSM-5 crystals using a combination of infrared (IR) and solid-state nuclear magnetic resonance (NMR) spectroscopy. The composites were created through the direct growth of Silicalite-1 crystals on ZSM-5 (P_ZSM-5), either with or without the organic structure-directing agent (OSDA) introduced into the ZSM-5 channels (samples: H_ZSM-5_Sil1 and TPA_ZSM-5_Sil1). The results revealed that Silicalite-1 grew differently when the ZSM-5 core was in the H+ form (empty pores) compared to when the OSDA was still present in the sample. This distinction was evident in the textural properties, with a decrease in the micropore surface area and an increase in the external surface area in the H_ZSM-5_Sil1 compared to the parent sample. The TPA_ZSM-5_Sil1 composite exhibited characteristics similar to the parent zeolite. These findings were further supported by 29Si NMR, which revealed a comparable local order for the parent (P_ZSM-5) and TPA_ZSM-5_Sil1 samples, along with a broadening of the Q4 peak for the H_ZSM-5_Sil1 composite. Additionally, the acid sites were preserved in the TPA_ZSM-5_Sil1 composite, while in the H+-form core, the concentration of Brønsted acid sites significantly decreased. This reduction in isolated Brønsted acid sites was further corroborated by 1H NMR.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have