Abstract

The degree of coordination between the supply and demand for urban green spaces serves as a vital metric for evaluating urban ecological development and the well-being of residents. An essential principle in assessing this coordination is the precise quantification of both the demand and supply of green spaces, as well as the differential representation of their spatiotemporal structures. This study utilizes the entropy weight method (EWM) and principal component analysis (PCA) to comprehensively measure supply indicators for green space quantity and quality in the central urban area of Shenyang, China. To establish reliable and quantifiable demand indicators, mobile signaling spatial-temporal data are corrected by incorporating static population cross-sectional data. The Gaussian two-step floating catchment area method (Ga2SFCA) is employed to calculate the accessibility of green spaces in each community with ArcGIS 10.2 software, while the Gini coefficient is utilized to assess the equity of green space distribution within the study area. This study employs location entropy to determine the levels of supply and demand for green spaces in each subdistrict. Furthermore, the priority of community-scale green space regulation is accurately determined by balancing vulnerable areas of green space supply and replenishing green space resources for the ageing population. The findings suggest a Gini coefficient of 0.58 for the supply and demand of green spaces in Shenyang’s central metropolitan region, indicating a relatively low level of equalization in overall green space allocation. Based on location entropy, the classification of supply and demand at the street level yields the following outcomes: balanced areas comprise 21.98%, imbalanced areas account for 26.37%, and highly imbalanced regions represent 51.65%. After eliminating the balanced regions, the distribution of the elderly population is factored in, highlighting the spatial distribution and proportions of communities with distinct regulatory priorities: Level 1 (S1) constitutes 7.4%, Level 2 (S2) accounts for 60.9%, and Level 3 (S3) represents 31.7%. Notably, the communities in the S1 category exhibit spatial distribution characteristics of aggregation within the inner ring and the northern parts of the third ring. This precise identification of areas requiring urgent regulation and the spatial distribution of typical communities can provide reliable suggestions for prioritizing green space planning in an age-friendly city.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call