Abstract

The objectives of this study were to assess the effectiveness of an ultraviolet (UV‐C, 254 nm) irradiation system and the spray‐drying method as two independent safety steps on inactivation of Escherichia coli K88 and K99 spiked in porcine plasma at 6·46 ± 0·04 log10 ml−1 and 6·78 ± 0·67 log10 ml−1 respectively for UV‐C method, and at 7·31 ± 0·39 log10 ml−1 and 7·66 ± 0·11 log10 ml−1, respectively for the spray‐drying method. The UV‐C method was performed at different UV light doses (from 750 to 9000 J l−1) using a pilot plant UV‐C device working under turbulent flow. Spray‐drying treatment was done at inlet temperature 220 ± 1°C and two different outlet temperatures, 80 ± 1°C or 70 ± 1°C. Results indicated that UV‐C treatment induced a 4 log10 viability reduction for both E. coli at 3000 J l−1. Full inactivation of both E. coli strains was achieved in all spray‐dried samples dehydrated at both outlet temperatures. The special UV‐C system design for turbid liquid porcine plasma is a novel treatment that can provide an additional redundant biosafety feature that can be incorporated into the manufacturing process for spray‐dried animal plasma.Significance and Impact of the StudyThe safety of raw materials from animal origin such as spray‐dried porcine plasma (SDPP) may be a concern for the swine industry. Ultraviolet treatment at 254 nm (UV‐C) of liquid plasma has been proposed as an additional biosafety feature in the manufacturing process of SDPP. We found that UV‐C exposure in the liquid plasma at 3000 J l−1 reduces about 4 log10 ml−1 for E. coli K88 and K99. Full inactivation of both E. coli strains was achieved in all spray‐dried samples. The incorporation of UV‐C treatment to liquid plasma improves the robustness of the SDPP manufacturing process.

Highlights

  • Spray-dried animal plasma (SDP) is a protein source extensively used in pig feed due to its functional components that contribute to improved post-weaning performance and survival (Torrallardona 2010)

  • After UV-C treatment at 3000 J lÀ1, bacterial counts showed a significant reduction of 4Á34 log, describing a curve adjusted to the log linear plus tail model (Fig. 1) with a regression coefficient of R2 = 0Á95 (Table 1)

  • Plasma inoculated with the strain E. coli K99 had an initial count of 6Á78 Æ 0Á67 log10 mlÀ1

Read more

Summary

Introduction

Spray-dried animal plasma (SDP) is a protein source extensively used in pig feed due to its functional components that contribute to improved post-weaning performance and survival (Torrallardona 2010). The safety of raw materials from animal origins is a concern for the swine industry. Ultraviolet (UV) treatment of liquid plasma has been proposed to introduce an additional redundant inactivation step in the manufacturing process of SDP to further enhance biosafety of the final spraydried product (Polo et al 2015; Blazquez et al 2017).

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.