Abstract

BackgroundSonographic ophthalmic examinations have become increasingly important in veterinary medicine. If the velocity of ultrasound in ocular tissues is known, the A-mode ultrasound method may be used to determine the axial intraocular distances, such as anterior chamber depth, lens thickness, axial length of the vitreous and axial globe length, which are required for intraocular lens (IOL) power calculations. To the authors' knowledge, the velocity of ultrasound in the ocular tissues of the horse was not previously determined. In the present study, 33 lenses, 29 samples of aqueous and 31 of vitreous from 35 healthy equine eyes have been examined. The corresponding ultrasound velocities are reported in dependence of age, temperature, gender and elapsed time after enucleation.ResultsThe velocity of ultrasound at 36°C in equine aqueous, lens and vitreous are 1529 ±10 m/s, 1654± 29 m/s and 1527 ±16 m/s respectively, and the corresponding conversion factors are 0.998± 0.007, 1.008 ±0.018 and 0.997 ±0.010. A linear increase of the speed of ultrasound with increasing temperature has been determined for aqueous and vitreous. No temperature dependence was found for the speed of ultrasound in the lens. The ultrasound velocity did not significantly differ (95%) on the basis of gender, age or time after enucleation during the first 72 hours after death.ConclusionsCompared to human eyes, the ultrasound velocity in equine lental tissue deviates by one percent. Therefore, axial length measurements obtained with ultrasound velocities for the human eye must be corrected using conversion factors. For the aqueous and vitreous, deviations are below one percent and can be neglected in clinical settings.

Highlights

  • Sonographic ophthalmic examinations have become increasingly important in veterinary medicine

  • We have calculated conversion factors for the three types of healthy equine ocular media, which are useful to correct the calculations of axial intraocular distances that are based on the speed of ultrasound in the human eye

  • The main result of this study is the calculation of the conversion factors which are essential to correct axial ocular dimensions measured with ultrasound equipment calibrated for human use

Read more

Summary

Introduction

Sonographic ophthalmic examinations have become increasingly important in veterinary medicine. If the velocity of ultrasound in ocular tissues is known, the A-mode ultrasound method may be used to determine the axial intraocular distances, such as anterior chamber depth, lens thickness, axial length of the vitreous and axial globe length, which are required for intraocular lens (IOL) power calculations. In addition to a full ophthalmological examination, evaluation of the globe can be achieved by ultrasonography, which is used routinely in human medicine and has become increasingly important in veterinary medicine. B-mode (brightness modulation) ultrasonography is used regularly. It provides a two-dimensional image that resembles a cross-section of the examined tissue. The A-mode ultrasound is used before cataract surgery to determine the required dioptic power of the artificial

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call