Abstract

One-particle Green's function methods can model molecular and solid spectra at zero or non-zero temperatures. One-particle Green's functions directly provide electronic energies and one-particle properties, such as dipole moment. However, the evaluation of two-particle properties, such as ⟨S2⟩ and ⟨N2⟩, can be challenging because they require a solution of the computationally expensive Bethe-Salpeter equation to find two-particle Green's functions. We demonstrate that the solution of the Bethe-Salpeter equation can be completely avoided. Applying the thermodynamic Hellmann-Feynman theorem to self-consistent one-particle Green's function methods, we derive expressions for two-particle density matrices in a general case and provide explicit expressions for GF2 and GW methods. Such density matrices can be decomposed into an antisymmetrized product of correlated one-electron density matrices and the two-particle electronic cumulant of the density matrix. Cumulant expressions reveal a deviation from ensemble representability for GW, explaining its known deficiencies. We analyze the temperature dependence of ⟨S2⟩ and ⟨N2⟩ for a set of small closed-shell systems. Interestingly, both GF2 and GW show a non-zero spin contamination and a non-zero fluctuation of the number of particles for closed-shell systems at the zero-temperature limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call