Abstract

In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. In contrast with 20% relative dose [(RD) dose relative to dmax on central axis] at 0.0153 cm in the film layer for 6 MV 10 x 10 cm2 open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150%, (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with and without the support device. For 6 MV conventional 10 x 10 cm2 field, the enhancement factor was the highest (3.4) for the Orfit carbon fiber plate. As for the IMRT field, the enhancement factors varied with the size of the area of interest and were as high as 3.8 (4.3) at the hot spot of 5 cm2 area in the top film layer (0.0153 cm) for 6 MV (15 MV) beams. Significant 2D bolus effect on skin dose in the presence of patient support and immobilization devices was confirmed and quantified with EBT film dosimetry. Furthermore, the EBT film has potential application for in vivo monitoring of the 2D skin dose distributions during patient treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.