Abstract

We present a systematic analysis of the predictions of two tube-theory based constitutive models: Marrucci and Ianniruberto and Rolie–Poly models. These models are tested in their single-mode form in rheometric flows and in their multimode form in transient, one-dimensional channel flow and steady, two-dimensional, contraction-expansion slit flow. Monodisperse and polydisperse polymers are considered, respectively. As these models predict infinite elongational viscosity, a finite chain extensibility factor is necessary to obtain physically meaningful results in uniaxial extension. A thorough investigation of Warner and Cohen nonlinear spring laws revealed that the latter law may lead to a nonphysical solution multiplicity, where two stable solutions, with a positive definite conformation tensor, arise. All the numerical results are compared with experimental observations and the predictions of Giesekus and Phan-Thien and Tanner models. Characteristic features measured experimentally in the benchmark flows are described well by all models although the tube-theory models perform, in general, more satisfactorily with respect to both the rheological data and the inhomogeneous flow data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.