Abstract

Measurements of stress growth and stress relaxation after onset and cessation of steady simple shear flow in concentrated polymer solutions were carried out with a Weissenberg rheogoniometer R-17 having a gap servo system. By using monodisperse polymers and their blends, the effect of molecular weight distribution on those transient phenomena is discussed. The so-called stress-overshoot was observed in both experiments of shear and normal stress growths. Ratio of the time of the maximum normal stress difference and that of the maximum shear stress is close to 2 at the limit of low shear rate for both monodisperse and polydisperse polymers. In the range of finite shear rate, the ratio is remarkably dependent on shear rate for polydisperse samples, whereas it is almost independent of shear rate for monodisperse polymers. Shear rate dependence of the ratio of the apparent relaxation time of normal stress difference and that of shear stress in stress relaxation experiments is also found to be remarkably affected by molecular weight distribution. From a comparison between these experiments and theories so far published, it is concluded that these transient phenomena may be explained by assuming that the relaxation spectrum is a function of shear rate at least if the shear rates are not too high. The comparison between theory and experiments is carried out without assuming explicit forms for relaxation spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.