Abstract
The thyroid disrupting chemicals (TDCs) have raised great concerns due to their adverse impacts on thyroid hormones (THs). In this study, we investigated the thyroid-disrupting effects of bisphenol F (BPF) and bisphenol S (BPS), two major BPA substitutes, on adult zebrafish (Danio rerio). Firstly, anti-transthyretin (TTR) monoclonal antibody (anti-TTR mAb) was prepared and used to establish an indirect ELISA, which had a working range of 15.6∼1000 ng/mL of a detection limit of 6.1 ng/mL. The immunoassays based on anti-TTR mAb showed that exposure to BPF (10 and 100 μg/L) and BPS (100 μg/L) significantly elevated the levels of TTR protein in the plasma, liver, and brain tissues. Moreover, immunofluorescence showed that 100 μg/L BPF and BPS induced the production of TTR protein in liver and brain tissues. In addition, BPF and BPS increased THs levels and damaged thyroid tissue structure in adult female zebrafish. Especially, 100 μg/L BPF significantly increased T4 and T3 levels by 2.05 and 1.14 times, and induced pathological changes of thyroid follicles. The changes in the expression levels of genes involved in the hypothalamus-pituitary-thyroid (HPT) axis further illustrated that BPF and BPS had significant adverse effects on THs homeostasis and thyroid function in zebrafish. Therefore, TTR immunoassays could be used for the evaluation of thyroid-disrupting effects in fish and BPF exhibited greater disruption than BPS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have