Abstract

Through-thickness penetration under vacuum assistance is crucial for resin film infusion (RFI) and vacuum assistant resin transfer molding (VARTM) process. In this paper, values of the through-thickness unsaturated permeability (TTUP) and capillary pressure (Pc) are estimated based on the infiltration velocity in preforms of carbon fiber fabric and glass fiber fabric, respectively, measured by a specially designed apparatus. It reveals that, for the through-thickness permeation, the Pc values generally decrease with increasing fiber content. Relatively accurate TTUP can be obtained by counting Pc into the permeation dynamics. If Pc is neglected, liquids with good-wettability, such as silicone oil, tend to result in larger TTUPs. The corrected TTUPs show good agreement according to Carman–Kozeny, Gutowski modified Carman–Kozeny equation, and Gebart model, respectively. The resultant permeability resistance parameters of the preforms indicate that the penetration in carbon fabric bed is slower than in glass fabric bed. However, for fiber volume fraction more than 60%, the corrected TTUPs show no significant difference for all the preforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call