Abstract

The performance of the novel chitin metal silicate (CMS) co-precipitates as a single multifunctional excipient in tablet formulation using direct compression and wet granulation methods is evaluated. The neutral, acidic, and basic drugs Spironolactone (SPL), ibuprofen (IBU) and metronidazole (MET), respectively, were used as model drugs. Commercial Aldactone®, Fleximex® and Dumazole® tablets containing SPL, IBU and MET, respectively, and tablets made using Avicel® 200, were used in the study for comparison purposes. Tablets of acceptable crushing strength (>40 N) were obtained using CMS. The friability values for all tablets were well below the maximum 1% USP tolerance limit. CMS produced superdisintegrating tablets (disintegration time < 1 min) with the three model drugs. Regarding the dissolution rate, the sequence was as follow: CMS > Fleximex® > Avicel® 200, CMS > Avicel® 200 > Dumazole® and Aldactone® > Avicel® 200 > CMS for IBU, MET and SPL, respectively. Compressional properties of formulations were analyzed using density measurements and the compression Kawakita equation as assessment parameters. On the basis of DSC results, CMS co precipitates were found to be compatible with the tested drugs. Conclusively, the CMS co-precipitates have the potential to be used as filler, binder, and superdisintegrant, all-in-one, in the design of tablets by the direct compression as well as wet granulation methods.

Highlights

  • Excipients are known to have a defined function when incorporated in pharmaceutical dosage forms

  • The pH of the media of the co-precipitation of calcium, magnesium, and aluminum silicates on chitin particles was measured as 10, 9, and 4, respectively. This highlights the basic nature of calcium and magnesium cations and the acidic nature of aluminum cations, which can be utilized in improving the dissolution of acidic and basic drugs

  • Complete MET release was within 5 min from all types of chitin metal silicate (CMS). These results reveal that all tablet formulations met the USP drug release tolerance criterion

Read more

Summary

Introduction

Excipients are known to have a defined function when incorporated in pharmaceutical dosage forms. These are added to modulate manufacturing and delivery of drug substances. The better the excipient can fulfill these functions, the more ideal that excipient is [1]. In solid dosage forms, immediate release tablets and capsules, excipients are added to facilitate processing because they are used to bulk the product, lubricate the powder, ease the flow and facilitate compression of the powder bed [2]. Stability and solubility of the drug substance can be improved by including suitable excipients. This improvement enhances the bioavailability [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.