Abstract

The yield and chemical structures of exopolysaccharides (EPS) produced by many strains of Streptococcus thermophilus have been characterized. However, the kinetics (or production profile) for EPS during milk fermentation is not clear. In this study, we investigated whether any differences existed in the yield and molar mass of EPS when milk was fermented at the same acidification rate by 2 strains of S. thermophilus(St-143 and ST-10255y). The type of EPS produced by these 2 strains is different. Milk samples were analyzed for EPS concentration every 30 min during a fermentation period of 270 min (final pH 4.5) by using a modified quantification method, which was faster and validated for its recovery of added EPS. Rheological properties of milks during fermentation were also analyzed using small-strain dynamic oscillatory rheology. For the determination of molar mass, EPS extracts were isolated by ultrafiltration of whey obtained during fermentation of milk to pH values 5.2, 4.9, 4.7, and 4.5, and molar mass was analyzed using size-exclusion chromatography-multi-angle laser light scattering. During fermentation, both strains appeared to start producing significant amounts of EPS after about ∼150 min, which corresponded to pH ∼5.3, which was close to the point of gelation. During the remainder of the fermentation process (150-270 min), the EPS concentration from strains St-143 and ST-10255y significantly increased from 30 to 72 mg/L and from 26 to 56 mg/L, respectively. The quantity of EPS recovered by our modified method was estimated to represent ∼60% of the total EPS added to milk. The molar mass of EPS produced by both strains appeared to slightly decrease during fermentation. At pH 5.2, EPS from St-143 and ST-10255y had molar masses of 2.9 × 106 and 1.4 × 106 g/mol, respectively, which decreased to 1.6 × 106 and 0.8 × 106 g/mol, respectively, when the pH of milk was 4.5. Distinct differences were apparent in the rheological properties of gels fermented by the 2 strains. At the end of fermentation, St-143 fermented milk had weaker gels with storage modulus (G') value at pH 4.6 of 26 Pa, whereas gels made with ST-10255y were stiffer with a G' value at pH 4.6 of 82 Pa. For St-143 gels, maximum loss tangent (LTmax) values were higher (0.50) and occurred earlier (at a higher pH value) than the LTmax values (0.46) for gels from ST-10255y strain. Because the fermentation conditions were identical for both strains, the observed changes in rheological properties could be due to the differences in chemical structures and molar mass of the EPS produced by these 2 S. thermophilus strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call