Abstract
BackgroundThe widespread use of bisphenol A (BPA) substitutes has aroused great attention towards their toxicological evaluation in vivo and in vitro. Considering the intimate correlation between BPA and metabolic diseases, we explored whether bisphenol S (BPS), a major substitute to BPA, could cause the splenic toxicity by disturbing the lipid metabolism in mouse model. MethodsWe investigated the splenic injury by combing the mass spectrometry (MS)-based lipidomics and imaging analysis, as well as molecular biological methods. Mice were divided into three groups (control-olive oil, 10 and 100 μg-BPS/kg body weight/day group) and treated by BPS in 56 days. ResultsTwo of BPS-treated concentrations induced the splenic morphological alterations and inflammation, including the decreased numbers and cellularity in the periarteriolar lymphoid sheath (T cell zone) and paucicellular primary lymphoid follicles (B cell zone) in splenic white pulp. Lipidome profiling of spleen after BPS treatment was also changed with up-regulated sphingosine [So], neutral glycosphingolipids [CerG], cholesteryl ester [ChE], diacylglycerols [DAG], lysophosphatidylcholine [LPC], lysophosphatidylethanolamine [LPE], phosphatidylglycerols [PG], phosphatidylinositols [PI] and phosphatidylserine [PS] as well as down-regulated ceramide [Cer], phosphatidylethanolamines [PE] and sphingomyelin [SM] compared to the control group. More importantly, significant different lipids in abundance and spatial distribution also implicated that white pulp were more sensitive to BPS treatment than other splenic sub-structures. Signaling lipids such as So (d18:0), Cer (d18:1/24:0), Cer (d18:1/22:0), SM (d18:1/22:1) and SM (d18:1/24:2) associated with inflammation were remarkable changed and co-localized in the splenic white pulp. ConclusionsOur finding indicated that BPS exposure promoted the splenomegaly, pro-inflammatory activation and morphological alterations, as well as induced the lipidome perturbation in the immune cells of white pulp, which might be expected to contribute a new perspective of bisphenol-induced organ injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.