Abstract
Scaffolds have been studied during the last decades as an alternative method to repair tissues. They are porous structures that act as a substrate for cellular growth, proliferation and differentiation. In this study, scaffolds of β-tricalcium phosphate with calcium silicate fibers were prepared by gel casting method in order to be characterized and validated as a better choice for bone tissue treatment. Gel-casting led to scaffolds with high porosity (84%) and pores sizes varying from 160 to 500 µm, which is an important factor for the neovascularization of the growing tissue. Biocompatible and bioactive calcium silicate fibers, which can be successfully produced by molten salt method, were added into the scaffolds as a manner to improve its mechanical resistance and bioactivity. The addition of 5 wt% of calcium silicate fibers associated with a higher sintering temperature (1300 °C) increased by 64.6% the compressive strength of the scaffold and it has also led to the formation of a dense and uniform apatite layer after biomineralization assessment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have