Abstract

AbstractWe prepared reactive latex blends from two copolymer latices comprised of n‐butyl methacrylate (n‐BMA) with acetoacetoxyethyl methacrylate and n‐BMA/dimethylaminoethyl methacrylate to study the kinetics of film formation. We generated thin films by blending equal weights of the two latices. The films were then cured at temperatures ranging from 50 to 90°C. The extent of the crosslinking reaction was calculated from the crosslink density, which was determined from swelling measurements of the films in toluene. The shrinking‐core model, a diffusion/reaction model, which was originally derived for combustion reactions of coal particles, was adopted to calculate the diffusion coefficient (De) and reaction rate constants from the extent of the reaction with time data. This model system exhibited a diffusion‐controlled regime above 70°C and a reaction‐controlled regime at temperatures below 70°C. In the reaction‐controlled regime, the shrinking‐core model predicted De for the system, which was in agreement with literature values for n‐BMA. In the diffusion‐controlled regime, the model predicted a lower apparent value for De but with an activation energy that was close to that obtained for n‐BMA. The model was also used to examine the kinetics of the crosslinking reaction. The kinetic rate constants for the crosslinking reaction were also determined. The activation energy for the crosslinking reaction was 18.8 kcal/mol, which compared reasonably with the activation energy of 22.8 kcal/mol determined for the reaction between the functional monomers as small molecules. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3659–3665, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.