Abstract
Since intestinal secondary bile acids (BAs) prevent Clostridium difficile infection (CDI), the serum BA profile may be a convenient biomarker for CDI susceptibility in human subjects. To verify this hypothesis, we investigated blood samples from 71 patients of the Division of Gastroenterology and Hepatology at the time of admission (prior to antibiotic use and CDI onset). Twelve patients developed CDI during hospitalization, and the other 59 patients did not. The serum unconjugated deoxycholic acid (DCA)/[DCA + unconjugated cholic acid (CA)] ratio on admission was significantly lower in patients who developed CDI than in patients who did not develop CDI (p < 0.01) and in 46 healthy controls (p < 0.0001). Another unconjugated secondary BA ratio, 3β-hydroxy (3βOH)-BAs/(3βOH + 3αOH-BAs), was also significantly lower in patients who developed CDI than in healthy controls (p < 0.05) but was not significantly different between patients who developed and patients who did not develop CDI. A receiver operating characteristic (ROC) curve determined a cut-off point of DCA/(DCA + CA) < 0.349 that optimally discriminated on admission the high-risk patients who would develop CDI (sensitivity 91.7% and specificity 64.4%). In conclusion, a decreased serum DCA/(DCA + CA) ratio on admission strongly correlated with CDI onset during hospitalization in patients with gastrointestinal and hepatobiliary diseases. Serum BA composition could be a helpful biomarker for predicting susceptibility to CDI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.