Abstract

The aim of this study was to investigate the expression of RhoA/Rho-kinase in the uterus and the effect of Rho-kinase inhibitors on uterine contractions of dehydroepiandrosterone (DHEA) induced polycystic ovary syndrome (PCOS) rats. Forty-four female Sprague-Dawley (21 days old) rats divided into three groups: The control group (n = 14, any procedure was not performed), vehicle group (n = 14, 0.2 ml of sesame oil, subcutaneous injection, 20 days) and PCOS group (n = 16, DHEA 6 mg/100 g in 0.2 ml of sesame oil, subcutaneous injection, 20 days). The myometrium thickness and uterine wet weight were assessed. The mRNA and protein expressions of Rho A, the effect of Rho-kinase inhibitors (fasudil and Y-27632) on KCl, carbachol, and PGF2α induced contractions were evaluated in the uterus. In the PCOS group, the myometrium thickness and uterine wet weight significantly increased compared to the control group and vehicle group. The mRNA expression level and the immunoreactive score of Rho A, ROCK 1, ROCK 2 were similar in all groups. In the PCOS group, KCl, carbachol, and PGF2α induced uterine contractions significantly increased compared to the control group and vehicle group. Fasudil and Y-27632 significantly inhibited KCl, carbachol, and PGF2α induced uterine contractions in all groups. In conclusion, the expression of Rho A, ROCK 1, ROCK 2 not changed although myometrium thickness, uterine wet weight and the contractile responses of uterus increased in the PCOS group. The results suggest that the Rho-kinase inhibitors effectively suppressed increased contractions in the PCOS group they might be potential therapeutic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.