Abstract

In this work, the bioelectrochemical system (BES) is a feasible alternative for successfully degrading typical refractory emerging contaminant triclosan (TCS). A single-chamber BES reactor with an initial TCS concentration of 1 mg/L, an applied voltage of 0.8 V, and a solution buffered with 50 mM PBS degraded 81.4 ± 0.2% of TCS, exhibiting TCS degradation efficiency improvement to 90.6 ± 0.2% with a biocathode formed from a reversed bioanode. Both bioanode and biocathode were able to degrade TCS with comparable efficiencies of 80.8 ± 4.9% and 87.3 ± 0.4%, respectively. Dechlorination and hydrolysis were proposed as the TCS degradation pathway in the cathode chamber, and another hydroxylation pathway was exclusive in the anode chamber. Microbial community structure analysis indicated Propionibacteriaceae was the predominant member in all electrode biofilms, and the exoelectrogen Geobacter was enriched in anode biofilms. This study comprehensively revealed the feasibility of operating BES technology for TCS degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.