Abstract
Processing of edible insects typically involves fractionating into high-value food ingredients, which results in by-products containing chitin and insoluble proteins. This study examined the effectiveness of lactic acid bacteria (LAB) in removing proteins from chitin in insect processing residues. Lesser mealworm processing residues were biologically treated for 48 and 120 h using LAB strains without added carbon sources. Results showed partial deproteinization, up to 29 % with Levilactobacillus brevis after 120 h. Most LAB grew up to 2 log10 colony-forming units/mL in the first 48 h. Confocal microscopy and Fourier-transform infrared spectra indicated that some protein remained attached to chitin. The molecular weight of solubilized proteins was affected by strain and time of incubation, with antioxidant activity increasing significantly after 120 h with Lacticaseibacillus paracasei. The biological treatment of insect processing streams can be a sustainable approach to producing high amounts of LAB biomass with subsequent protein solubilization and chitin release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.