Abstract

In this study, thin films of zinc oxide doped with fluorine ZnO: F were deposited via ultrasonic spray pyrolysis (USP) with an atomic ratio of [F/Zn] in a starting solution of 15 at.% on borosilicate glass coverslips and SiO2/Si substrates. The structure, electrical resistivity, and thickness were obtained via X-ray diffraction, the four-point technique, and profilometry, respectively. A ZnO: F piezoresistor was modeled at the fixed end of the cantilever through lithography and chemical etching. A SiO2/Si cantilever structure was used to evaluate the piezoresistivity of a ZnO: F thin film, and temperature coefficient of resistance (TCR) measurements were performed in an electric furnace. The strain on the ZnO: F piezoresistor caused by the application of masses at the free end of the cantilever was determined using a theoretical equation, in addition to a simulation in the COMSOL Multiphysics 5.3a FEM (finite element method) software considering the dimensions and materials of the manufactured device. The ZnO: F thin films were hexagonal wurtzite (phase 002), with thicknesses in the range from 234 nm to 295 nm and with resistivities of the order of 10−2 Ω.cm. The ZnO: F thin-film piezoresistor showed a gauge factor (GF) of 12.7 and a TCR of −3.78 × 10−3 %/K up to 525 K, which are suitable properties for sensor development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call