Abstract

This paper presents the results of an investigation into the seismic level of protection afforded to reinforced concrete shear wall systems. The vulnerability and damage potential of a 30-storey building consisting of a coupled shear wall as well as noncoupled shear walls as lateral force resisting systems is evaluated. The structure, which is similar to an existing building designed and constructed in Vancouver, is designed in accordance with the 1995 National Building Code of Canada and detailed using the provisions of CAN3-A23.3-M94 (1994). Elastic analysis is performed using both two-dimensional and three-dimensional shell element models for lateral loading with and without the effects of torsion. Element design specifications are used to create moment curvature envelopes to describe the members (beam and wall) deformation characteristics. These characteristics are incorporated into the nonlinear pushover analysis and dynamic inelastic time history analysis. The level of protection investigation illustrates that the coupled and noncoupled shear wall systems exhibit excellent performance following excitations of two and three times the design level earthquake. Maximum interstorey drift and element damage levels are within the acceptable limits for life-safe performance.Key words: seismic, reinforced concrete, shear walls, coupling beams, performance, inelastic, dynamic, design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call