Abstract

Photothermal therapy (PTT) has been emerging as an effective, minimally invasive approach to treat cancers. However, a method to quantitatively evaluate the treatment effect after laser-induced thermotherapy (LITT) is needed. In this study, we used 808 nm laser radiation with three different power densities to treat the breast cancer tissue from 4T1 cell lines in a mouse model. The viscoelastic properties of the treated cancer tissues were characterized by a two-term Prony series using a ramp-hold indentation method. We observed that instantaneous shear modulus G0 was significantly higher for the treated cancer tissues than that of the untreated tissue when treated with a power density of 1.5 W/cm2, but significantly lower with a power density of 2.5 W/cm2. The long-term shear modulus G∞ was also significantly higher for the cancer tissue at 1.5 W/cm2, compared to the untreated tissue. The treatment effects were verified by estimating the cell apoptosis rate using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Our results indicate that the viscoelastic properties of the tissue could potentially be used as biomarkers for evaluating the LITT treatment effect. In addition, we also observed a strain-independent behavior of the treated cancer tissue, which provided useful information for applying in vivo imaging method such as magnetic resonance elastography (MRE) for treatment evaluation based on biomechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.