Abstract

During the COVID-19 pandemic, sample pooling has proven an effective strategy to overcome the limitations of reagent shortages and expand laboratory testing capacity. The inclusion of influenza and respiratory syncytial virus (RSV) in a multiplex tandem PCR platform with SARS-CoV-2 provides useful diagnostic and infection control information. This study aimed to evaluate the performance of the influenza and RSV targets in the AusDiagnostics SARS-CoV-2, Influenza and RSV 8-well assay, including the effect of pooling samples on target detection.RSV target detection in clinical samples was compared to the Cepheid Xpert Xpress Flu/RSV assay as a reference standard. Samples were then tested in pools of four and detection rates were compared. Owing to the unavailability of clinical samples for influenza, only the effect of sample pooling on simulated samples was evaluated for these targets.RSV was detected in neat clinical samples with a positive percent agreement (PPA) of 100% and negative percent agreement (NPA) of 99.5% compared to the reference standard, demonstrating 99.7% agreement. This study demonstrates that sample pooling by four increases the average Ct value by 2.24, 2.29, 2.20 and 1.91 cycles for the target's influenza A, influenza A typing, influenza B and RSV, respectively. The commercial AusDiagnostics SARS-CoV-2, Influenza and RSV 8-well assay was able to detect influenza and RSV at an intermediate concentration within the limit of detection of the assay. Further studies to explore the applicability of sample pooling at the lower limit of detection of the assay is needed. Nevertheless, sample pooling has shown to be a viable strategy to increase testing throughput and reduce reagent usage. In addition, the multiplexed platform targeting various respiratory viruses assists with public health and infection control responses, clinical care, and patient management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.