Abstract
There is an urgent clinical demand to explore novel diagnostic and prognostic biomarkers for renal cell carcinoma (RCC). We proposed deep learning-based artificial intelligence strategies. The study included 1752 whole slide images from multiple centres. Based on the pixel-level of RCC segmentation, the diagnosis diagnostic model achieved an area under the receiver operating characteristic curve (AUC) of 0.977 (95% CI 0.969-0.984) in the external validation cohort. In addition, our diagnostic model exhibited excellent performance in the differential diagnosis of RCC from renal oncocytoma, which achieved an AUC of 0.951 (0.922-0.972). The graderisk for the recognition of high-grade tumour achieved AUCs of 0.840 (0.805-0.871) in the Cancer Genome Atlas (TCGA) cohort, 0.857 (0.813-0.894) in the Shanghai General Hospital (General) cohort, and 0.894 (0.842-0.933) in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort, for the recognition of high-grade tumour. The OSrisk for predicting 5-year survival status achieved an AUC of 0.784 (0.746-0.819) in the TCGA cohort, which was further verified in the independent general cohort and the CPTAC cohort, with AUCs of 0.774 (0.723-0.820) and 0.702 (0.632-0.765), respectively. Moreover, the competing-risk nomogram (CRN) showed its potential to be a prognostic indicator, with a hazard ratio (HR) of 5.664 (3.893-8.239, p<0.0001), outperforming other traditional clinical prognostic indicators. Kaplan-Meier survival analysis further illustrated that our CRN could significantly distinguish patients with high survival risk. Deep learning-based artificial intelligence could be a useful tool for clinicians to diagnose and predict the prognosis of RCC patients, thus improving the process of individualised treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.