Abstract

Blending hydrogen (H2) produced from Renewable Energy Sources (RES) in the existing Natural Gas (NG) network is a promising option for the deep decarbonization of the gas sector. However, blending H2 with NG significantly affects the thermophysical properties of the gas mixture, changing the gas supply requirements to meet the demand. In this work, different scenarios of green hydrogen blending (Blend Ratio BR equal to 5/10/15/20%vol) are analyzed at national level with different temporal constraints (hour/day/week/month/year) based on real gas demand data in Italy, addressing both design requirements (RES and electrolyzer capacity) via Linear Programming (LP) and carrying out dynamic simulations of different operational strategies (constant or variable blend). Although H2/NG blending provides a huge opportunity in terms of deployed H2 volume, higher BRs show rapidly increasing design requirements (1.3-1.5 GWe/%vol and 2.5-3 GWe/%vol for electrolysis and RES capacity respectively) and a significative increase of the total gas mixture volume (0.83 %/%vol) which hinders the CO2 reduction potential (0.37 %/%vol). A variable blend operation strategy (allowing a variation of BR within the analysed period) allows to balance a variable H2 production from RES. Wider temporal constraints imply several beneficial effects such as relaxing design constraints and avoiding the implementation of an external storage, thus reducing the cost while maintaining the same amount of injected gas. The Levelized Cost Of Hydrogen (LCOH) is preliminarily estimated around 7.3 $/kg for yearly scenarios (best-case), although shorter temporal constraints entail significative excess hydrogen which would increase the LCOH if not deployed for other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.