Abstract

IntroductionIn 2019, a new virus from the coronavirus family called SARS-CoV-2, infected populations throughout the world. Coronavirus disease 2019 (COVID-19), an illness induced by this virus, attacks vital organs in the body, such as the respiratory system and the gastrointestinal tract. Recent studies have confirmed changes in the gut microbiome caused by the COVID-19 disease. We examined the alteration of the gut microbiome in COVID-19 patients compared to healthy individuals. Materials and methodsin this study, the 16s metagenomics dataset, publicly available in the Sequence Read Archive (SRA) database, was used for analysis (accession number PRJNA636824). The analysis processes were performed using the CLC Microbial Genomics Module 20.1.1 (Qiagen). At first, the sequence reads of samples were trimmed and classified into operational taxonomic units (OTUs) with 97% similarity and then assigned to the Greengenes reference database (v138). Differential abundance analysis was used to determine statistically significant differences in OTUs between COVID-19 and healthy groups. Next, biodiversity analyses including the alpha diversity (intragroup diversity) and beta diversity (intergroup diversity) using defined indexes were estimated. Then, the co-occurrence network at the species level was constructed using the Pearson correlation coefficient calculation between pairs of OTUs in R software and visualized using Cytoscape software. Ultimately, the hub OTUs at the species level were identified using the cytoHubba plugin of Cytoscape based on Maximal Clique Centrality (MCC) algorithm. ResultsThe results of the metagenomic analysis revealed that the intestinal microbiome in healthy individuals has a higher biodiversity compared to COVID-19 patients. Indeed, healthy people also have a higher percentage of beneficial bacteria such as bifidobacteria adolescentis compared to COVID-19 patients; in contrast, COVID-19 patients have higher levels of opportunistic and pathogenic bacteria such as Streptococcus anginosus than healthy people. Also, by constructing a co-occurrence network at the species level, Bifidobacterium longum in the healthy group and Veillonella parvulain the COVID-19 group were found as hub species. ConclusionThe results of this study shed light on the relationship between the gut microbiome and COVID-19. These results could be helpful for understanding the pathogenesis, clinical features, and treatment of COVID-9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call