Abstract

Nitrogen (N) supply significantly influences plant growth and crop yields. To investigate the dynamic process of wheat plant responses to nitrogen management, digital infrared thermography was used to detect canopy average temperature (CAT) during different wheat growth stages in three field management experiments, including N applied rates, N application methods and cultivation approaches, which were conducted in 2013–2014 in southeast China. The CAT was reduced with increased N rates, compared to the control (0N), applications of 300kgNha−1 reduced CAT by 14.0%, 10.7% and 9.2% at the tillering, heading and milking stages, respectively. The CAT was also sensitive to N application methods, in which the CAT of the farmers’ fertilizer practice (FFP) was lower and higher than that of the optimal N management (OPT) before the heading stage and after the heading stage, respectively. Considering the cultivation approaches, the effects of deep tillage (NC-DP) on the CAT was more efficient than normal cultivation (NC) in wheat production. Lower CAT was observed for higher wheat biomass and yield, as a result of the CAT being somewhat negatively correlated with leaf N content. The wheat yield could be estimated by monitoring the CAT based on the response curves of the grain yield and CAT to the N addition rate, which was associated with stomatal conductance and transpiration rate. In conclusion, our results indicated that canopy temperature may provide an effective tool for dynamical monitoring of wheat growth and yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.