Abstract
To evaluate the fidelity of multiple displacement amplification (MDA) from small number of cells (1-10 cells) by 10K 2.0 SNP mapping array. A fibroblast cell line (Tri-18; GM02732, 47, XY, +18) was used as the template, and 6 groups were set up in the study. Groups A and B were positive and negative control, respectively; groups C-F were experimental groups involving the MDA products from 1, 2, 5 and 10 cells respectively. In combination of single nucleotide polymorphism (SNP) array, the product of each group was assessed based on the genome coverage, loss of heterozygosity (LOH) rate and allele dropout (ADO) rate. The nonspecific product of negative control presented an average call rate of 3.2%. The genome coverage of the MDA product increased from 86.4% to 96.4% with the increasing number of template from 1 to 10 cells, while the LOH rate and ADO rate decreased significantly (P<0.05). MDA is a highly efficient and reliable method for whole genome amplification. The fidelity of MDA will be improved significantly with the increasing number of template cells. 10K 2.0 SNP mapping array is a quick, accurate and comprehensive method to evaluate the fidelity of amplified DNA products, but the ADO SNPs should be distinguished from those of preferential amplification from the LOH loci to avoid errors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have