Abstract

Thermal fatigue widely takes place in light water reactor (LWR) piping systems. It is an important aging mechanism of a nuclear reactor. Thermal transient effects occur at the startup and shutdown of a nuclear power plant. During the thermal transients, local and global cyclic stresses are induced in the piping systems. They are exacerbated by local geometric imperfections and environmental factors, which may lead to crack initiation. The elbows of such piping systems are subject to various combinations of loads (internal pressure, bending, and torsion, as well as thermal fluctuations) during their service life. As can be seen, high-stress concentrations are developed in these piping elements. Therefore, it is important to make a failure evaluation. In this paper, a 12” pipe system segment, which was made with SA 106 Gr C steel, has been considered. It was composed by two straight sections joined by a long radius elbow. Typical start-up and shutdown transient effects of a BWR-5 were considered. A computer-aided thermo-mechanical analysis was carried out using the finite element method. The linearization of the stresses was considered, based on the ASME B & PVC Code Section III, subsection NB. Under these conditions, environmental fatigue was analyzed after 40-and 60-years operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call