Abstract

The purpose of this research is to classify time-series data on the number of daily COVID-19 cases based on the dynamics. This research aims to evaluate the effectiveness of community activity restrictions in suppressing the number of new cases of COVID-19 in cities and regencies in West Java. We performed time-series clustering on daily positive case data for COVID-19 in 27 cities and regencies in West Java Province, Indonesia for this study. The k-medoids clustering algorithm was used for clustering, with shape-based lock step measures, specifically, the cross correlation-based distance. We used daily new infected cases data for COVID-19 in 27 cities and regencies in West Java Province during the worst situation. We used data from 1 July 2021 to 31 September 2021 and from 1 January 2022 to 31 May 2022, during the Emergency Community Activity Restriction period (PPKM). According to our findings, the optimal number of clusters that could be formed from the data we had was 4 clusters for the first period and 2 clusters for the second period, with silhouette value of 0.2633 and 0.6363, respectively. For the first period, we discovered that PPKM was successful in clusters 1 and 2, namely in 25 cities/districts in West Java, except for Bogor and Depok, while for the second period, we found PPKM to be effective in reducing the number of COVID-19 cases throughout cities and regencies in West Java. This shows there is an improvement from the implementation of PPKM in the first period. We also found that the cluster that was formed was not only influenced by the effectiveness of the PPKM, but also by geography. The closer a city is to a hotspot region for the spread of COVID-19, the earlier the increase in the number of new COVID-19 cases will occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.