Abstract

Typhoons and typhoon waves can cause disasters in coastal areas around the world. The Taiwan Strait often experiences typhoons, especially in summer. Numerical models have been adopted to predict typhoons and reduce losses. The Weather Research and Forecasting (WRF) model is widely used in typhoon simulations, and the Simulating WAves Nearshore (SWAN) model performs well in wave simulations. However, significant uncertainty remains in terms of choosing suitable WRF physical parameterizations in different situations. To evaluate the effect of WRF physical parameterizations on wind and wave simulations, 27 simulation experiments were designed. Three typhoon events (Goni, Dujuan, and Meranti) with different tracks that influenced the Taiwan Strait were simulated. Three parameters (wind speed, wind direction and significant wave height) were assessed using Taylor diagrams, and it was found that the best simulation experiment changed according to typhoon tracks and physical parameters. In wind speed simulation, the best simulation experiment is 12 for typhoon Dujuan and 19 for typhoon Goni and Meranti. From the perspective of wind direction simulation, experiments 26, 23, and 2 performed best for typhoons Goni, Dujuan, and Meranti. And experiments 19, 1, and 20 had the best performances in significant wave height simulation for typhoons Goni, Dujuan, and Meranti. The WRF-SWAN model using the best simulation experiment reduced the error and exhibited good performance in the wind and wave simulations. Skill scores of three parameters were all over 70 for typhoon Goni and 80 for typhoon Dujuan and Meranti. The applicability of the best simulation experiments was demonstrated in typhoon simulations with similar tracks. The accuracy of the wave simulation depended on wind speed, wind direction, and their interaction. In addition, a scheme’s sensitivity changed with different typhoon tracks. This study provides references for designing physical parameterizations for use with the WRF-SWAN model, which may help to simulate typhoons and typhoon waves in the Taiwan Strait more accurately in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call