Abstract

The influence of a lignin additive at different loading levels on the surface properties, mechanical, and thermal performance of recycled polypropylene composites reinforced with wheat straw, before and after accelerated weathering, was studied. Eight groups of samples were exposed to an ultraviolet (UV) accelerated weathering tester for a total of 1200 h. The weathered surface morphology, chemical change, and color change were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and chroma meter analyses, respectively. Furthermore, the mechanical properties and oxidation induction time (OIT) were tested. It was shown that the use of lignin had a positive effect in improving mechanical properties and in reducing OIT values of filled composites due to the enhanced fiber/matrix interface bonding and its functions of anti-oxidation. Less fibers were falling off and shallower cracks occurred on the weathered surface of the lignin reinforced composites. The carbonyl index of wheat straw fibers reinforced recycled polypropylene composites (WSF/RPP) with 5 wt% lignin content showed a notable decrease of 4.9% when compared with the growth rate of the control groups. When the stabilizer was introduced to the blends, the mechanical properties and antioxidant capacity of the composites were improved during weathering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call