Abstract

ObjectiveTo investigate the diagnostic performance of the ADNEX model in the International Ovarian Tumor Analysis diagnostic models for ovarian tumors and further explore its application value in the staging of ovarian tumors.MethodsA total of 224 patients who underwent ultrasound for evaluation of adnexal masses and were treated surgically owing to adnexal masses from January 2018 to June 2020 in our hospital were selected for research on the diagnostic accuracy of the ADNEX model. The clinical information and ultrasonographic findings of the patients were collected, and the pathological diagnosis was taken as the gold standard. According to the ADNEX model, the ovarian tumors were divided into five subtypes: benign and borderline, stage I, stage II–IV, and metastatic cancer. The sensitivity, specificity, positive predictive value, negative predictive value, diagnostic odds ratio, and area under the receiver operating characteristics curve (AUC) of the ADNEX model were calculated.ResultsOf the 224 patients, 119 (53.1%) developed benign tumors and 105 (46.9%) had malignant tumors. When the cut-off value for malignancy risk was 10%, the ADNEX model including CA 125 achieved a sensitivity of 94.3% (95% CI: 88.0–97.9%), specificity of 74.0% (95% CI: 65.1–81.6%), positive predictive value of 76.2% (95% CI: 70.2–81.3%), negative predictive value of 93.6% (95% CI: 87.0–97.0%), diagnostic odds ratio of 45.25, and an AUC of 0.94 (95% CI: 0.90–0.97) for differentiating between benign and malignant ovarian tumors. The AUC in the model excluding CA 125 was 0.93 (95% CI: 0.89–0.96), but the difference was not statistically significant (P=0.20). The accuracy of the ADNEX model for the diagnosis of ovarian tumors of all subtypes exceeds 80% when CA 125 measurements were included in the application, but the sensitivity for diagnosing borderline, stage I, and metastatic ovarian tumors was only 60.0% (95% CI:36.1–80.9%), 28.6% (95% CI:8.4–58.1%) and 45.5% (95% CI:16.7–76.6%).ConclusionThe ADNEX model shows good diagnostic performance in differentiating between benign and malignant ovarian tumors. The model has a certain clinical value in the diagnosis of all subtypes of ovarian tumors, but the sensitivity is unsatisfactory for the diagnosis of borderline, stage I, and metastatic ovarian tumors and needs to be verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call