Abstract

In this study, Kola nut extract (KE) was evaluated for inhibiting ability towards low carbon steel corrosion in 1M HCl solution using weight loss and electrochemical techniques. The surface of the corroded carbon steel was examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Elemental composition of the corrosion products and/or adsorbed inhibitor film on the carbon steel surface was determined with the aid of an energy-dispersive X-ray spectroscopy (EDX). The ultraviolet-visible (UV-vis) experiments were also performed to get information about the interaction of KE with the carbon steel surface. It was found that KE exhibited good corrosion protection property. From weight loss technique, corrosion rate was reduced from 0.387 to 0.054mm/year by 700ppm of KE at room temperature after 24h immersion and this corresponded to inhibition efficiency (IE) of 86%. The IE however depreciated with rise in temperature. FTIR results reveal that KE interacted with the carbon steel surface through the O and N heteroatoms of its phytoconstituents. FTIR spectroscopy, UV-vis, SEM, AFM, and EDX data provided proof of KE adsorption on the steel surface as reason for the corrosion inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call