Abstract

This study evaluated the effects of retinal ischemia-reperfusion (IR) injury and pre-treatment with the potent and specific aldose reductase inhibitor fidarestat on apoptosis, aldose reductase and sorbitol dehydrogenase expression, sorbitol pathway intermediate concentrations, and oxidative-nitrosative stress. Female Wistar rats were pre-treated with either vehicle (N-methyl-D-glucamine) or fidarestat, 32 mg kg(-1) d(-1) for both, in the right jugular vein, for 3 consecutive days. A group of vehicle- and fidarestat-treated rats were subjected to 45-min retinal ischemia followed by 24-h reperfusion. Ischemia was induced 30 min after the last vehicle or fidarestat administration. Retinal IR resulted in a remarkable increase in retinal cell death. The number of TUNEL-positive nuclei increased 48-fold in the IR group compared with non-ischemic controls (p<0.01), and this increase was partially prevented by fidarestat. AR expression (Western blot analysis) increased by 19% in the IR group (p<0.05), and this increase was prevented by fidarestat. Sorbitol dehydrogenase and nitrated protein expressions were similar among all experimental groups. Retinal sorbitol concentrations tended to increase in the IR group but the difference with non-ischemic controls did not achieve statistical significance (p=0.08). Retinal fructose concentrations were 2.2-fold greater in the IR group than in the non-ischemic controls (p<0.05). Fidarestat pre-treatment of rats subjected to IR reduced retinal sorbitol concentration to the levels in non-ischemic controls. Retinal fructose concentrations were reduced by 41% in fidarestat-pre-treated IR group vs. untreated ischemic controls (p=0.0517), but remained 30% higher than in the non-ischemic control group. In conclusion, IR injury to rat retina is associated with a dramatic increase in cell death, elevated AR expression and sorbitol pathway intermediate accumulation. These changes were prevented or alleviated by the AR inhibitor fidarestat. The results identify AR as an important therapeutic target for diseases involving IR injury, and provide the rationale for development of fidarestat and other AR inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.