Abstract

The facultative depression of body temperature represents an important energy strategy for small homeotherms. However, measuring body temperature under field conditions by means other than externally attached temperature-sensitive radio transmitters is problematical. We show that skin temperatures measured by external radio transmitters can accurately reflect core temperature for the bat Carollia perspicillata. We compared body and skin temperatures at three ambient temperatures (Ta; 21, 26, and 31 °C). The difference between skin and body temperature (ΔT) was linearly correlated with Ta and can be predicted by ΔT = 4.396 − 0.118Ta. We argue that external temperature-sensitive radio transmitters can provide a reliable index of core temperature and so permit the study of torpor or facultative hypothermia under field conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.