Abstract
Polypropylene (PP) capillary-channeled polymer (C-CP) fibers have been used in this laboratory as stationary phases for high performance liquid chromatography and solid phase extraction of proteins. Greater selectivity has been realized through the functionalization of the PP fibers through the physical adsorption of commercially available head group-modified poly(ethylene glycol) lipids (PEG-lipids), where the head group is chosen to affect affinity separations. We refer to this general surface modification methodology as lipid tethered ligands (LTLs). In this study, LTLs were synthesized by solid phase synthesis. In comparison to the commercial PEG-lipids, the synthesized LTLs contain no chemically labile phosphate groups. Instead of an ester linkage in the commercial lipids, amide functionality was used in the synthesized LTLs to attach the lipids and ligands. By use of fluorescence imaging of FITC-labeled LTLs, the synthesized LTL was shown to be superior to the commercial LTL in terms of the adsorption efficiency to PP C-CP fibers, the resistance to solvent wash from the PP C-CP fibers, and their chemical stability under acidic, neutral and basic conditions. The PP C-CP fibers functionalized with a synthesized LTL that was biotinylated at the head group are shown to be capable of capturing streptavidin from E. coli cell lysate more efficiently than the PP C-CP fibers functionalized with the commercial biotinylated PEG-lipid. The functionalization of PP C-CP fibers with the synthesized LTLs is a simple, but highly efficient, method to generate novel stationary phases with a variety of functionalities for solid phase extraction and liquid chromatography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.