Abstract

Background: The antimicrobial activity of plants has long been considered an effective mechanism for controlling pathogenic microorganisms.
 Objectives: This study aimed to identify phytochemical compounds of the seed extracts from ethnomedicinal plants of Pistacia atlantica, Cassia absus, and Quercus persica with Gas Chromatography-Mass Spectrometry (GC-MS) and investigation of their antibacterial and antioxidant activities.
 Methods: The seeds were collected from Lorestan Province, Iran. Their antibacterial and antiradical activities were analyzed by disk-diffusion and 2,2-diphenyl-1-picrylhydrazyl assays, respectively. Ethanol (96%), methanol (80%), and distilled water extracts were obtained by the maceration method. The methanol extract was used for the analysis of chemical compositions.
 Results: About 40, 31, and 8 compounds were identified by GC-MS in the seeds of C. absus, P. atlantica, and Q. persica, respectively. Results indicated that 2,4-di-tert-butylphenol (36.043%) and tetradecanoic acid (4.92%) were dominated in the seed extracts of C. absus. However, germacyclopetene (38.119%) and 1,2,3-benzenetriol (8.115%) were dominated in the seed extracts of P. atlantica. Furthermore, 5H-tetrazole-5-thione, 1,4-dihydro-1,4-dimethy (38.505%), and tetradecanoic acid (30.546%) were dominated in the seed extracts of Q. persica. The highest inhibitory activity against Micrococcus luteus was observed on the methanol extract of C. absus with ascorbic acid. A significant difference was observed between the Inhibitory Concentration (IC50) values of methanol extract of C. absus with ascorbic acid.
 Conclusion: Because of the presence of antimicrobial compounds in the tested ethnomedicinal plants, they can be used to synthesize new antimicrobial drugs in medicinal and pharmaceutical sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call