Abstract

Accurate representation of surface solar radiation (SSR) trends is an important indicator for global climate models (GCMs) to correctly reproducing the historical climate evolution. This study examines the annual mean SSR trends in China under all-sky and clear-sky conditions for the period 1961–2014 in 34 Coupled Model Intercomparison Project Phase 6 (CMIP6) models using the latest homogenized in-situ SSR dataset. The site-observed annual mean SSR over China shows a significant decadal decline during 1961–2005 but an uptrend during 2006–2014, with the trends being −6.4 (−8.6) W m−2 and + 2.5 (+5.9) W m−2 per decade under all-sky (clear-sky) condition, respectively. All CMIP6 models simulate the sustained decline in SSR over China for the period 1961–2005 but significantly underestimate the dimming. The model results show trends of −1.9 ± 0.5 W m−2 and -2.5 ± 0.7 W m−2 per decade during 1961–2005 under all-sky and clear-sky conditions, respectively, which are around one third of the observed results. Furthermore, the models fail to capture the reversal of SSR trends in China during 2006–2014, with the trends being −1.1 ± 1.7 W m−2 and -2.2 ± 0.9 W m−2 per decade under all-sky and clear-sky conditions, respectively. We infer that the underestimation of anthropogenic aerosol emissions, especially absorbing black carbon emissions cause the underestimated simulation of SSR in dimming period over China. After 2005, the unseasonal increase in carbonaceous aerosol emissions and the weaker decline of sulfur dioxide emissions in China in the models result in an opposite SSR trends relative to the trends based on the site-observations. Our results suggest that improving the anthropogenic aerosol emissions inventory will be useful for generating a more accurate reproduction of the regional SSR evolution over China in GCMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call