Abstract

As sources of irrigation water are decreasing, efficient use of surface irrigation is essential. The purpose of this study is to determine if partially-wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation in an alluvial clay soil under cultivated grape production. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water was applied when available soil water reached 65 % and 50 %, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. Coefficient of variation (CV) was 5.2 and 9.5 % for WT and DT under furrow irrigation system comparing with 7.8 % in border, respectively. Water was deeply percolated as 11.9 and 19.2 % for wet and dry furrow treatments respectively, compared with 12.8 % for control, with no deficit in the irrigated area. Partially-wetted furrow irrigation had greater water-efficiency and grape yield than dry furrow and traditional border irrigation, where application efficiency achieved as 88.1 % for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg /ha). The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (t0) in minute for WT and DT treatments as: ZWT = 0.528 t00.6, ZDT = 1.2 t00.501, IWT = 19 t0−0.4, IDT = 36 t0−0.498. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The irrigation parameters and coefficients, and soil water distribution have been also evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call