Abstract

Deficient surface disposal systems of sulfidic mine waste often cause severe contamination of surface streams and groundwater reservoirs due to the oxidation of sulfide phases. The subsequent generation of leachates characterized by high acidity and elevated concentrations of toxic elements (commonly known as acid mine drainage) jeopardize the health of contiguous ecosystem. Stabilization/solidification (S/S) is recognized as a promising solution for treating such wastes. S/S processes generally mobilize alkaline and/or cementing materials/additives that act as neutralizing and/or binding agents. In the present research, industrial byproducts, namely, cement kiln dust (CKD) and Class C fly ash (FAC) have been used as candidate materials along with the partial addition of sulfate-resistant cement (SRC) in the S/S of polymetallic sulfidic mine tailings (MT). The effectiveness of S/S was assessed by comparing laboratory experimental values obtained from unconfined compressive strength, hydraulic conductivity and leaching propensity tests of S/S samples with regulatory standards for safe surface disposal of such wastes. Despite general regulatory compliance of compressive strength and hydraulic conductivity, some solidified/stabilized-cured matrices were found unable to provide the required immobilization of pollutants. Solidified/stabilized and 90-day cured mine tailings specimens made with composite binders containing (10% CKD + 10% FAC), (5% SRC + 75% FAC) and (5% SRC + 5% CKD + 10% FAC) significantly impaired the solubility of all contaminants investigated and proved successful in fixing metals within the matrix, in addition to achieving adequate unconfined compressive strength and hydraulic conductivity values, thus satisfying U.S. EPA regulations. Laboratory investigations revealed that, for poly metallic mining waste, leachate concentrations are the most critical factor in assessing the effectiveness of S/S technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.