Abstract

PurposeThe aim of this study is to perform patient quality controls and end-to-end tests for stereotactic VMAT lung treatment plans and to investigate the influence of various parameters on the results. Method18 plans were defined by an experimental design methodology to cover a large variety of stereotactic VMAT lung treatments including different doses per fraction, target diameters, target movements and respiratory parameters. Plans were first controlled using portal dosimetry and a homogeneous static cylindrical phantom. End-to-end tests were then performed in a dynamic respiratory thorax phantom. Measurements were conducted with ionization chamber and films. Calculations were performed with the AcurosXB and AAA algorithms in 6 FFF. ResultsPortal dosimetry gave excellent gamma pass rates (greater than 97.1 %) and dose deviations between measurement and calculations in a homogeneous static phantom were smaller than 2 %. The methodology followed for comparing calculated and measured doses in a moving target was validated in static fields (largest deviation smaller than 2 %). End-to-end tests showed mean deviations of 1.9 %, 3.3 % and 6.6 % for the 3, 2 and 1 cm diameter’s target respectively. Deviations increased for larger movements for the 1 cm lesion. ConclusionEnd-to-end tests revealed that stereotactic VMAT lung treatment plans for moving targets can be delivered within 5 % for 3 and 2 cm diameter targets and amplitudes up to 1.5 cm. The AcurosXB and AAA algorithms however tend to underestimate the dose to the target. Even with satisfactory patient quality controls like portal dosimetry, extra care should be taken for GTV lesions smaller than 2 cm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call