Abstract
The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for intensity-modulated conformal plans using the Peacock Plan were significantly better for the lung and head and neck cases studied, equivalent for prostate cases, and inferior for breast cases. Using the entire 3D data set to construct radiotherapy plans through virtual simulation is always advantageous, whether done for stereotactic radiosurgery, beam's-eye-view conformal therapy, or intensity-modulated conformal treatment. Intensity modulation of the photon beam further enhances treatment planning under specific conditions. In general, the intensity-modulated technique is advantageous for large, irregular targets with critical structures in close proximity. Intensity-modulated treatment planning does not appear advantageous for stereotactic radiosurgery or treatment of the intact breast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.