Abstract

This paper examines three sets of approximate formulae for the overall tetragonal effective elastic properties of two-phase fiber-reinforced unidirectional composites with isotropic phases. The fibers are of circular cross-sections and periodically distributed in a matrix in a square pattern. The formulae by Kantor and Bergman, Luciano and Barbero, and estimates based on non-interacting Maxwell’s type approximations are rewritten in unified notations. The latter approximations coincide with the most of well-known estimates of the effective medium theories (composite cylinder model, generalized self-consistent model and the Mori–Tanaka method), as well as with one of the Hashin–Shtrikman variational bounds. The approximate estimates are compared with the exact periodic solutions to determine the range of their applicability. The simplest and most accurate formulae are identified and suggested as a set of approximate expressions for accurate estimates of the effective elastic properties of composite materials with a square symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.