Abstract

The present work addresses the problem of calculation of the macroscopic effective elastic properties of composites containing transversely isotropic phases. As a first step, the contribution of a single inhomogeneity to the effective elastic properties is quantified. Relevant stiffness and compliance contribution tensors are derived for spheroidal inhomogeneities. The limiting cases of spherical, penny-shaped and cylindrical shapes are discussed in detail. The property contribution tensors are used to derive the effective elastic moduli of composite materials formed by transversely isotropic phases in two approximations: non-interaction approximation and effective field method. The results are compared with elastic moduli of quasi-random composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.