Abstract

A blended NiCr-Cr2O3-Ag-BaF2/CaF2 feedstock was sprayed using an atmospheric plasma spraying process. Due to the differences in physical and thermophysical properties of each constituent, coating microstructures and resulting coating properties were largely dependent on the interactions between each constituent phase and plasma jet in view of the physics of thermal spraying. Thus, hydrogen gas flow rate was changed to affect the plasma jet characteristics such as gas enthalpy and gas thermal conductivity in this study. According to it, evolutions of chemical composition and microstructures of the as-sprayed coatings were observed. As the hydrogen gas flow rate was increased, Cr2O3 weight fraction was increased with the decrease of Ag and porosity. Vickers microhardness and bond strength of the coatings showed consistent behaviors to the phase composition and microstructures. Friction coefficient and weight loss during a pin-on-disc dry sliding wear test were measured from room temperature to 500°C at the interval of 100°C. Finally, the effects of phase fraction and coating properties on the friction and wear were investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call