Abstract

This study aims to assess the extent of heavy metals (HMs) pollution in soil and identify its potential sources using single and integrated pollution index calculations, and multivariate statistical analysis. The HM concentrations of soil samples were analyzed using ICP-MS. The concentrations (mg/kg) of arsenic (As) ranged from 2.8 to 208.1, cadmium (Cd) from 0.1 to 0.3, cobalt (Co) from 1.9 to 20.5, copper (Cu) from 3.7 to 17.7, nickel (Ni) from 14.7 to 110.6, and lead (Pb) from 6.7 to 37.3. High levels of As contents and physicochemical parameters were found in the northeastern parts of the study area, while levels of other HMs were high in the remaining parts. The HM contents of some soil samples exceeded the average values of basalt and limestone in the study area, as well as the upper, bulk, and lower continental crusts, shale, and soil (worldwide). Multiple index methods were used to assess the pollution risk, and it was determined that some soil samples were moderately to considerably contaminated with varying levels of As, Cd, Co, Ni, and Pb. Multivariate statistical analyses provided that the source of HMs contamination in the soil was a result of geogenic and/or anthropogenic activities. Geogenic sources were associated with weathering rock units, while anthropogenic sources were linked to industrial activities, traffic emissions, and agricultural applications. The findings are useful for detecting contamination by HMs in soil, and they could contribute to future monitoring programs to prevent soil contamination and protect the health of living organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call