Abstract

The present investigation focuses on evaluating the entire load–displacement relationship, especially the softening part, of light-frame wall segments subjected to in-plane monotonic forces when the load-slip curves of the individual sheathing-to-framing fasteners are considered. Different sheathing-to-framing joint characteristics, including unloading behaviour, and stud-to-rail joint characteristics are incorporated in the analyses. Two loading cases are investigated: Horizontal loading resulting in uplift of the leading stud and diagonal loading representing a fully anchored wall.Two common types of finite element (FE) models for the sheathing-to-framing joints are used for the analyses: A single spring model and a spring pair model, where the joint characteristics valid for the timber properties perpendicular and parallel to the grain are used. The maximum capacity of the wall segments is somewhat overestimated when using the spring pair model compared to that of the single spring model. The softening parts of the load–displacement curves are significantly affected, regardless of whether the perpendicular or parallel characteristics of the joints are used.The results from FE simulations using models with perpendicular and parallel characteristics are compared with full scale test results for walls with a single segment loaded horizontally and diagonally. The behaviour of the wall segments subjected to horizontal loading is dominated by fastener displacements perpendicular to the bottom rail. Hence, FE models including perpendicular characteristics should be used. For diagonal loading the behaviour of the wall segments is dominated by displacements parallel to the framing members, and FE models including parallel characteristics should therefore be used.The analyses were extended to multiple segment walls resulting in the same type of behaviour as single segment walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call