Abstract

Background and purposeEfficacy of sodium valproate in epilepsy is limited by its poor blood brain barrier penetration and side effects. Nanoparticles may offer a better drug delivery system to overcome these limitations. This study evaluated the efficacy of sodium valproate encapsulated in nanoparticles in pentylenetetrazole (PTZ) induced acute and kindling models of seizures in male Wistar rats. MethodsPoly lactic-co-glycolic acid (PLGA) based, polysorbate 80 stabilized sodium valproate loaded nanoparticles (nano sodium valproate) and rhodamine loaded nanoparticles (RLN) were formulated by double emulsion- solvent evaporation method and characterized for their size, shape, zeta potential and drug loading percentage. RLN was used to demonstrate blood brain barrier (BBB) permeability of nanoparticles. Serum drug levels were estimated using high performance liquid chromatography. The efficacy of standard sodium valproate (300 mg/kg) and nano sodium valproate (∼300, ∼150 and ∼75 mg/kg of sodium valproate) were evaluated in experimental animal models of seizures along with their effects on behavioral and oxidative stress parameters. Drugs were administered 60 min before PTZ in acute model. In the kindling model, drugs were administered every day while PTZ was administered on alternate days 60 min after drug administration. All the study drugs/compounds were administered intraperitoneally. ResultsRLN were observed to be clustered in cortex which implied that the nanoparticles crossed BBB. Both standard sodium valproate and nano sodium valproate reached therapeutic serum level at 15 min and 1 h, but were undetectable in serum at 24 h. In acute PTZ (60 mg/kg) model, nano sodium valproate (∼300 mg/kg of sodium valproate) and standard sodium valproate showed protection against seizures till 6 h and 4 h, respectively. There were significant behavioral impairment and oxidative stress with standard sodium valproate in acute model as compared to nano sodium valproate at 6 h. In kindling model, induced with PTZ (30 mg/kg, every alternate day for 42 days), complete protection from seizures was observed with nano sodium valproate (∼150 mg/kg and ∼75 mg/kg of sodium valproate) and standard sodium valproate (300 mg/kg). Similarly, significant protection from behavioral impairment and oxidative stress was observed with standard sodium valproate and nano sodium valproate as compared to PTZ. ConclusionWhen compared to conventional therapy, nano sodium valproate showed protection from seizures at reduced doses and for a longer duration in animal models of epilepsy. This study suggests the potential of nano sodium valproate in the treatment of epilepsy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.